If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+14x=225
We move all terms to the left:
4x^2+14x-(225)=0
a = 4; b = 14; c = -225;
Δ = b2-4ac
Δ = 142-4·4·(-225)
Δ = 3796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3796}=\sqrt{4*949}=\sqrt{4}*\sqrt{949}=2\sqrt{949}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{949}}{2*4}=\frac{-14-2\sqrt{949}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{949}}{2*4}=\frac{-14+2\sqrt{949}}{8} $
| 30=t/4+27 | | 3.6x-17.46=2.7 | | 8z-5=9+10z | | 4t+2=-10 | | n+(-4)=19 | | 75x+50=25x-79 | | 21.5x=18x+70 | | -8.4=m3 | | 23b+12=-4+103b | | 8−3c=–1 | | 2=s/2-8 | | -(7/(4x))+(5/(6x))=1 | | 9x=12=7x-4 | | 14+5d=24 | | 10=3(y+1)+1 | | 6=(0.12)^x | | x2+30=79 | | k/1.2=6.21 | | d+-1/4=3 | | 0.99x=10 | | 3=-0.7b | | X42+2x18=180 | | 4-2k=-12 | | 39x/3=52 | | 4(s−87)=48 | | 3x^{2}+18x-49=0 | | 7=n/2-3 | | -8c-3=21 | | z/8+38=41 | | 5=26x^2 | | 1.12(m+2)+3=7.48 | | 12+3z=63 |